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Abstract

We propose an eXplainable Risk Ranking (XRR) model
that uses multilevel encoders and attention mechanisms
to analyze financial risks among companies. In specific,
the proposed method utilizes the textual information in
financial reports to rank the relative risks among compa-
nies and locate top high-risk companies; moreover, via
attention mechanisms, XRR enables to highlight the crit-
ical words and sentences within financial reports that are
most likely to influence financial risk and thus boasts bet-
ter model interpretability. Experimental results evaluated
on 10-K financial reports show that XRR significantly
outperforms several baselines, yielding up to 7.4% im-
provement in terms of two ranking correlation metrics.
Furthermore, in our experiments, the model interpretabil-
ity is evaluated by using finance-specific sentiment lexi-
cons at word level and an annotated reference list at the
sentence level to examine the learned attention models.

Introduction
Most finance literature on risk analysis has focused on quan-
titative approaches (Fama and French 1993; Toma and De-
dua 2014; Saini and Bates 1984; Aikman et al. 2011). One
of the most important works (Fama and French 1993) dis-
covered that the size of a company and its book-to-market
ratio are the key factors to financial risk; outside of these
two key factors, other factors that may as well affect finan-
cial risk are still uncertain. With the progress in text analyt-
ics, there have been many studies trying to uncover other
potential risk factors by exploiting alternative textual infor-
mation (e.g., news, reviews, and financial reports) to ana-
lyze financial risk (Ding et al. 2015; Rekabsaz et al. 2017;
Nopp and Hanbury 2015).

Due to the noise within finance documents and the in-
formation gap between texts and financial numerical mea-
sures, it is difficult to predict the exact finance quantities (e.g.,
stock return and volatility) and to extract useful information
and relations directly by using textual information. Thus,
the work in (Tsai and Wang 2016) proposes using ranking-
based methods for analyzing financial risk with the use of
textual information and shows that ranking-based methods
are more suitable than regression-based methods for such an
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analytic task. However, the work in (Tsai and Wang 2016)
and other pioneering studies such as (Kogan et al. 2009;
Schumaker and Chen 2009) mainly use simple and hand-
crafted features to describe financial documents, like bags-
of-words, noun phrases, and named entities. Thus, these ap-
proaches are difficult to model complex structures or seman-
tics in texts, which limits their potential and usage scenarios.

In recent years, deep neural networks such as CNN (LeCun
et al. 1998), GRU (Chung et al. 2014), and BERT (Devlin et
al. 2018) have demonstrated promising results across NLP
tasks such as document classification and sentiment anal-
ysis (Dos Santos and Gatti 2014; Akhtar et al. 2017). The
advancements are due to the superiority of these techniques in
learning semantically meaningful representations. Although
such deep learning approaches can extract the latent features
from texts, most of these models are not interpretable, which
is however a vital ingredient in models for finance applica-
tions. To some extent, attention mechanisms alleviate the
interpretability problem, as attention layers explicitly weight
the components’ representations. Thus, it is often undoubted
that attention mechanisms can identify information that mod-
els find important.

To advance the state of the art, we propose an eXplain-
able Risk Ranking model (XRR) to capture key information
from financial reports and investigate related financial risks.
Specifically, XRR is a deep neural network model incorpo-
rating multilevel explainable structures and learning to rank
techniques for ranking relative risks defined by post-event
return volatility (Loughran and McDonald 2011) among com-
panies. To build the XRR model, we first design a multilevel
explainable structure to model the complex structures within
financial texts by using sequence encoders based on bidi-
rectional gated recurrent units (GRUs) at both the word and
sentence levels. At each level, the attention mechanism is
leveraged to make the model explainable. Moreover, unlike
many previous hierarchical deep neural network architectures,
which are mainly on classification tasks (Ding et al. 2015;
Luo et al. 2018), XRR ranks the relative risks among
companies and locates top high-risk companies. To en-
able this, we propose a pairwise ranking loss based on a
siamese network with two parallel multilevel explainable
structures. In addition, we propose using the post-event
return volatility as the proxy of financial risk because it
excludes the effect of several important macro-economic



factors and is effective for monitoring the event effect on
the change of stock prices (Loughran and McDonald 2011;
Tsai, Wang, and Chien 2016).

We conduct comprehensive experiments using a large col-
lection of 10-K financial reports from 1996 to 2013, con-
sisting of 39,083 reports in total. The results show that the
proposed XRR significantly outperforms other baselines in
terms of all evaluation metrics. For robustness, we also con-
duct a comparison on different financial risk proxies and
conduct several financial analyses to verify our results. More-
over, we conduct evaluation and discussion by using external
finance-specific sentiment lexicons and an annotated refer-
ence list at the sentence level to examine the learned financial
sentiment texts with high attention scores and the correspond-
ing financial risks. In this evaluation, XRR exhibits a stronger
retrieval power compared to the baselines and provides more
insightful understanding into the impact of the financial texts
on companies’ future risks. In summary, XRR advances the
state of the art in the following four dimensions.

1. We propose a deep neural network architecture for risk
ranking with financial reports, allowing for modeling fi-
nancial texts with more complex structures than those
traditional non-neural models.

2. With the multilevel attention mechanism, the proposed
model is explainable at both the word and sentence levels,
the ability of which is essential for finance applications.

3. We propose using the post-event return volatility as a risk
proxy for such text analytic tasks, and our experiments
also attest the appropriateness of the proxy for the tasks.

4. We conduct extensive experiments and analyses on a large
collection of financial reports, the results of which attest
the effectiveness of the proposed method in terms of both
ranking performance and interpretability.

Methodology
We first formulate the risk ranking problem, and then provide
an brief description of the post-event return volatility. Finally,
we describe the proposed XRR model in detail.

Definitions and Problem Formulation
We rank the companies along with their relative financial risks
with the use of companies’ associated textual information
via a pairwise ranking model. Note that we here use the
post-event return volatility as a proxy of financial risk for
each company. Following the work in (Tsai and Wang 2016),
we slot the volatilities within a year into several risk levels;
thus, each company ci corresponds to a risk level vi ∈ Z.
Given a collection of financial reportsD, we generate a set of
pairs of financial reports {(d`, dj)|d`, dj ∈ D}, each element
in which corresponds to a pair of financial reports for two
companies c` and cj . We thus have the pairwise risk model
f : Rp → R for comparison between companies c` and cj
such that

E (d`, dj) = 1{v`>vj}, (1)
where vi denotes the risk level of company ci and p denotes
the dimension of the representation of a report di. Note that
the rank order of the set of companies is specified by the real

score that the model f takes. In particular, f(d`) > f(dj)
is taken to mean that the model asserts that c` � cj , where
di ∈ Rp denotes the representation of report di and c` � cj
means that c` is ranked higher than cj ; that is, the company
c` is riskier than cj .

Post-event Return Volatility
Post-event volatility has been widely used as a proxy of
financial risk in finance research, especially in the case of
event study (Ito, Lyons, and Melvin 1998). In contrast to the
naive stock return volatility, which is defined as the standard
deviation of the daily stock returns over a certain period,
post-event volatility calculation takes into account macro-
economic factors; thus, such a measure excludes the effect of
these macro-economic factors and is effective for monitoring
the event’s effect on the change of stock prices. As a result, for
event study, it is considered a more suitable risk proxy than
the naive stock return volatility, though many data mining
works adopt the naive stock return volatility to conduct the
analysis. Note that in the above context, “event” refers to the
filing of a financial report.

Following the definition in (Loughran and McDonald 2011;
Tsai, Wang, and Chien 2016), we define the post-event return
volatility as the root-mean-square error from a Fama and
French three-factor model (Fama and French 1993) for days
[6, 252] after the event and at least 60 daily observations.
Then, we focus on modeling the effect on the post-event
return volatility of a company after its report filing. For com-
parison purposes, we also include the results of naive stock
return volatility in the Experiments section.

Multilevel Explanation Structure
Inspired by several hierarchical language networks (Yang
et al. 2016; Hu et al. 2018; Ding et al. 2015), we construct
XRR, our pairwise risk ranking model, using a multilevel
structure to represent pairs of financial reports. The structure
is mainly made of a word-level embedding matrix and two
major components at both word and sentence levels: the GRU
sequence encoder and the multilevel attention mechanism
(see Figure 1).

Embedding Matrix Given the set of word vocabularyW ,
we embed each word w ∈ W into a real-valued vector x
through a embedding matrix We ∈ R|W|×m, where m is the
dimension of word vectors.

GRU Sequence Encoder Given a report d ∈ D with L
sentences {s1, s2, . . . sL}, st denotes the embedded repre-
sentation of the t-th sentence. In each report, the t-th sentence
consists of l words {wt1, wt2, . . . , wtl}, where wti ∈ W . To
encode both sentences and documents, we adopt bidirec-
tional GRUs at both the word and sentence level, respectively,
which leverage past and future information to better utilize
contextual finance information. Generally speaking, in the
sentence encoder, for the `-th word in the t-th sentence, wt`,
with its corresponding word embedding xt` from We, the
word can be depicted by concatenating the forward hidden
state

−→
h t` and the backward one

←−
h t` of the GRU encoders;

that is, the annotation of the `-th word in the t-th sentence



Figure 1: XRR network structure

becomes
ht` =

−→
h t` ⊕

←−
h t` =

−−→
GRU(xt`)⊕

←−−
GRU(xt`),

for ` = 1, 2, . . . l, where
−→
h t`,
←−
h t` ∈ Rh, ⊕ denotes the

concatenation operator, and h refers to the hidden size of
a GRU encoder. Then, we have ht` ∈ R2h and Hw =
(ht1, · · · , htl) ∈ Rl×2h.

Following the same process, in the document encoder, the
t-th sentence is represented by concatenating the forward
hidden state

−→
h t and the backward one

←−
h t, i.e.,

ht =
−→
h t ⊕

←−
h t =

−−→
GRU(st)⊕

←−−
GRU(st),

for t = 1, 2, . . . L, where
−→
h t,
←−
h t ∈ Rh. Then we have

ht ∈ R2h and Hs = (h1, · · · , hL) ∈ RL×2h.
Multilevel Attention Mechanism To provide fine-

grained explainable results, the proposed XRR involves one
level of attention at the word level and one at the sentence
level; these pay more or less attention to individual words
and sentences and capture influential texts in financial
reports with respect to financial risks. Specifically, for
the t-th sentence, we feed each word annotation ht`
through a fully-connected layer to yield ut` as the hidden
representation of ht`, after which the attention mechanism
measures the importance of the hidden representation ut`
with a word level context vector Uw and obtains a normalized
importance weight αt` through a softmax function. After
that, we compute the sentence vector st as a weighted sum
of the word annotations. Mathematically speaking, we have

ut` = tanh (Wwht` + bw) , ` = 1, 2, . . . l

αt` =
exp(u>t`Uw)∑l
i=1 exp(u>tiUw)

, ` = 1, 2, . . . l

st =

l∑
`=1

αt`ht`,

where Ww ∈ Ra×2h, bw ∈ Ra, and Uw ∈ Ra.
Similar to the above procedure, we feed the hidden repre-

sentation of each sentence annotation ht by using a single-
layer perceptron to get ut, which is associated with a normal-
ized importance weight αt via a sentence level context vector
Us, i.e.,

ut = tanh (Wsht + bs) , t = 1, 2, . . . L

αt =
exp(u>t Us)∑L
i=1 exp(u>i Us)

, t = 1, 2, . . . L

where Ws ∈ Ra×2h, bw ∈ Ra, and Us ∈ Ra.
Finally, with the weight vector αt for t = 1, · · · , L, the

representation of each report di ∈ D, di, is computed as a
weighted sum of the sentence annotations as

di =

L∑
t=1

αtht. (2)

Pairwise Deep Ranking
We use a pairwise approach to rank the financial reports ac-
cording to their financial risk levels. To this end, we build a



pair of multilevel structures described in the previous sub-
section, with the weights shared across both sides of the
structures, as illustrated in Figure 1. Given a pair of financial
reports (d`, dj), where the company associated with d` is
riskier than that with dj according to their risk levels, the
goal of the ranking model f(·) is to generate a higher score
for d`. Denote Ψ =

{
(d`, dj) |E (d`, dj) = 1

}
as the set of

all “positive” pairs, each element in which is fed into two
separate but identical hierarchical structures. Our goal is to
learn a score function f(·) that satisfies

f(d`) > f(dj), ∀(d`, dj) ∈ Ψ, (3)

where di denotes the dense representation of report di ob-
tained from Eq. (2). Note that in practice, we implement a
siamese network for f(·) that adopts the same weights while
working in tandem on two different input vectors to compute
comparable output vectors.

To obtain an overall risk ranking for all companies (re-
ports), we adopt a standard RankNet (Burges et al. 2005) loss
layer to learn a posterior probability distribution P`j that is
close to the target probability E (d`, dj) defined in Eq. (1) for
each pair (d`, dj), where

P`j =
exp (f(d`)− f(dj))

1 + exp (f(d`)− f(dj))
.

A natural choice for measuring the closeness between two
probability distributions is binary cross-entropy; thus we have
the objective function to be minimized as

min−
∑

(d`,dj)∈Ψ

(E (d`, dj) logP`j

+ (1− E (d`, dj)) log (1− P`j)) .

Experiments
Data Description
We conducted experiments on a large collection of 10-K
reports from year 1996 to year 2013 provided by (Tsai,
Wang, and Chien 2016), which are annual reports required
by the Securities and Exchange Commission (SEC) provid-
ing comprehensive overviews of companies’ business and
financial conditions and which include audited financial state-
ments. Specifically, following previous studies in (Kogan et
al. 2009; Tsai and Wang 2016; Tsai, Wang, and Chien 2016;
Buehlmaier and Whited 2018), we used only Section 7 “Man-
agement’s Discussion and Analysis of Financial Conditions
and Results of Operations” (MD&A) in the experiments as
it contains the most important forward-looking statements
about the companies.

Experimental Settings
We first split the post-event return volatilities of companies
within a year into five different risk levels1 and generated a set
of pairs of financial reports based on the relative difference

1 We here split the volatilities based on 30-th, 60-th, 80-th, and 90-
th percentiles, yielding the average numbers of the five categories
per year as 702, 702, 467, 234, and 234, respectively.

of levels among the companies. Due to the huge numbers of
document pairs, we sampled 3,000 pairs to train the model
in each epoch; moreover, we differentiated the pair sampling
probabilities based on their degree of proximity to the testing
year; that is, pairs closer to the testing year were given a
higher sampling probability. In addition, the dimension of
the word vector, m, depended on the pre-trained word em-
bedding models used, the hidden size of the GRU (h) is set
to 100, and the attention size (a) is set to 100. The maximum
number of words in sentences (l) and that of sentences in doc-
uments (L) were set to 150 and 70, respectively. The values
of the model hyperparameters for the compared method were
decided using a grid search over different settings; we used
the combination that led to the best performance.

Pre-trained Word Embedding
We evaluated different word embedding models to construct
the pre-trained word embedding matrix We.

1. Fin-Word2Vec (Tsai, Wang, and Chien 2016) denotes
vectors pre-trained via Word2Vec with a skip-gram model
trained on the 10-K Corpus (39083 reports from 18 years);
each word is represented as a 300-dimensional vector.

2. BERT-Large, Uncased (Devlin et al. 2018) contains 24-
layer, 1024-hidden, 16 heads, and 340M parameters; each
word in a document is represented by a 1024-dimensional
vector, and only the word embedding is used in our model.2

3. GloVe (Pennington, Socher, and Manning 2014) represen-
tations are 300-dimensional word vectors3 trained on 840
billion tokens of Common Crawl data.

In the following experiments, we denote each word embed-
ding model with the first character of its name (i.e., F, B, G)
with parentheses, e.g., XRR (B) for XRR with BERT-Large.

Compared Methods
We compare the proposed XRR with several baseline models
including a ranking-based and two multi-class classification
models.

1. RankSVM4 is used in (Tsai and Wang 2016), which
adopts ranking SVM with TF-IDF of words as features,
where IDF is computed from the documents in a single
year as the document frequency of a specific word may
vary across different years.

2. FastText is proposed by (Grave et al. 2017), a simple and
efficient baseline for document classification.

3. HAN is proposed by (Yang et al. 2016), adopting hierar-
chical networks with attention mechanisms for document
classification. For HAN, we used GloVe as the pre-trained
word embedding and sorted the companies using the prob-
abilities of the high-risk class in the softmax layer.

2 Note that in BERT models, words in different sentences (or docu-
ments) are associated with different representations; to reflect this,
we treat words in different documents as different words.

3 https://nlp.stanford.edu/projects/glove/
4 The linear kernel was adopted with C = 1; all other parameters

were left at the default SVMRank values.



Metric Method Model
Test year 2001 2002 2003 . . . 2010 2011 2012 2013 Average

τ

Classification Fasttext 0.475 0.388 0.401 . . . 0.449 0.460 0.452 0.463 0.426
HAN 0.527 0.474 0.582 . . . 0.557 0.569 0.590 0.593 0.535

Ranking

RankSVM 0.549 0.521 0.525 . . . 0.589 0.592 0.593 0.591 0.547
XRR (G) 0.536 0.501 0.502 . . . 0.580 0.607 0.623 0.607 0.547
XRR (B) 0.541 0.525 0.518 . . . 0.591 0.616 0.632 0.625 0.559
XRR (F) 0.570 0.541 0.553 . . . 0.605 0.616 0.637 0.629 0.573∗

ρ

Classification Fasttext 0.589 0.493 0.506 . . . 0.573 0.583 0.568 0.585 0.540
HAN 0.648 0.587 0.599 . . . 0.690 0.702 0.720 0.727 0.661

Ranking

RankSVM 0.685 0.657 0.661 . . . 0.733 0.733 0.731 0.732 0.686
XRR (G) 0.671 0.632 0.636 . . . 0.720 0.750 0.762 0.748 0.684
XRR (B) 0.675 0.659 0.657 . . . 0.732 0.756 0.772 0.766 0.697
XRR (F) 0.702 0.675 0.691 . . . 0.749 0.760 0.773 0.768 0.711∗

Notation ∗ denotes significance compared to the best baseline under a permutation test with p < 0.05.

Table 1: Performance comparison

Evaluation Metrics
To evaluate the performance of our model, we first adopted
two common rank correlation metrics: Spearman’s Rho
(ρ) (Myers, Well, and Lorch 2003) and Kendall’s Tau (τ) (G.
1938). Given two ranked lists X = {x1, x2, . . . xn} and
Y = {y1, y2, . . . yn}, the formula of these two metrics are
defined as

ρ = 1− 6
∑

(x` − y`)2

n(n2 − 1)

τ =
#concordant pairs− #discordant pairs

n(n2 − 1)
For the measure of Kendall’s Tau, any pair of observations
(x`, y`) and (xj , yj) is concordant if the ranks for both ele-
ments agree; that is, if both x` � xj and y` � yj or if both
xj � x` and yj � y`. In contrast, it is discordant if x` � xj
and yj � y` or if xj � x` and y` � yj . If x` = xj or
y` = yj , the pair is neither concordant nor discordant.

Experimental Results
Table 1 tabulates the experimental results, in which all re-
ports from the five-year period preceding the testing year are
used as the training data. For example, the reports from 1996
to 2000 constitute the training data, and the trained model
is tested on the reports of year 2001. The boldface number
in the table denotes the best result among all methods per
test year. As shown in the table, the proposed XRR reveals
the strong correlations in terms of the two metrics between
the predicted financial risk levels and the actual levels. We
attribute the superior performance of XRR to the follow-
ing observations: 1) The RankSVM and XRR ranking-based
methods successfully identify relative risks between each fi-
nancial document pair and yield better performance than the
two classification models; 2) XRR models a much more com-
plex structure of representations of financial texts than the
traditional bag-of-words model, yielding better performance
than RankSVM+TF-IDF.

In addition, we compare the proposed XRR using different
pre-trained word embeddings. The results show that XRR

(F), the model with Fin-Word2Vec, yields consistently better
performance than those with GloVe or BERT. A closer look
at the results shows that although XRR with BERT yields
better results than that with GloVe, the model using a domain-
specific word embedding, i.e., XRR (F), still achieves the
best performance among the three. This demonstrates that
a high-quality, domain-specific word embedding is also an
important factor for such a task.5

On the other hand, while correctly ranking all reports along
with their financial risk is important, financial scholars and
practitioners may care more about locating the most risky
companies. To examine this type of performance,6 we further
use the concepts of precision@K and recall in information
retrieval as our evaluation metrics, where we use the realized
post-event volatilities to rank the companies in each year
and treat the top-K companies as our ground truth when
calculating precision. In addition, in terms of recall, we take
the companies with the highest risk levels as the ground
truth. As shown in Figure 2, our method outperforms both
RankSVM and HAN in terms of these two metrics, indicating
that the proposed XRR is more effective at locating high-
risk companies than the other two methods. Note that in the
following subsections, we use the results of XRR (F), the best
model, for further analyses and interpretability discussion.
We also omit the notation denoting the pre-trained word
embedding, i.e., “(F)”, to simplify the notation.

Fine-grained Analysis
We here conduct a fined-grained analysis to further investi-
gate the performance of companies associated with different
risk levels. To do so, we first equally split the companies
within a year into five different risk levels according to their
realized post-event return volatilities; we then calculate the

5 Due to resource limitations, we could not train a domain-specific
BERT model; however, we speculate that using a domain-specific
BERT would yield further improvements.

6 We omit the comparison to Fasttext here as its performance in
Table 1 distances it from the other three models.



Figure 2: Evaluation on high-risk companies

Variables Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Firm Size 8.5052 7.8410 6.9821 6.1892 5.7281

Table 2: Firm size analysis

τ and ρ correlation metrics for companies in each rank. As
shown in the heat map in Figure 3, where the color denotes
the correlation, the proposed model yields better performance
for companies with higher financial risk, which shows that the
model effectively locates high-risk companies, thus making
our approach useful in practice.

Also, we investigate the relation between the predicted risk
levels and the average firm size7 of the companies at each
risk level. According to (Fama and French 1993), smaller
firms are typically associated with higher financial risk than
larger ones. To examine the rationality of our prediction, we
equally split the firms based on our predicted scores in each
year into five risk levels and calculate the average firm size
separately in each of the five groups. Table 2 shows that the
predicted high-risk companies (Rank 5) are on average small
in terms of their firm size, which indicates that our model
learned from textual information from financial reports yields
findings consistent with the literature in finance.

Different Risk Measure Analysis
To demonstrate the suitability of using post-event return
volatility as our risk proxy, we compare its performance
with the naive stock volatility in Figure 4. The definition of
the naive stock volatility is the standard deviation of stock
returns8 over a certain period. Following the setting in (Tsai,
Wang, and Chien 2016), we choose daily stock returns for 12
months after the report filing date to calculate the naive stock
return volatility. In Figure 4 we observe that the correlations
between the predicted risk scores and post-event volatilities
are much higher than those between the predicted scores and
the naive stock return volatility. This is because the naive
stock return volatility is a noisy risk proxy for pure textual

7 The firm size is defined as the logarithm of the sum of all current
and long-term assets held by a company (in million dollars).

8 The stock return is the appreciation in the price plus any dividends
paid, divided by the original price of the stock.

(a) τ (b) ρ
Figure 3: Fine-grained correlation analysis

(a) τ (b) ρ

Figure 4: Comparison of different volatility measures

analysis, as it does not exclude other macro-economic or hu-
man behavior risk, making it difficult for models to capture
the relation between text and risk. One obvious case in year
2008, the well-known financial crisis, shows that the naive
stock return volatility was drastically affected by the market,
causing its lowest correlation of the whole sample period.

Discussions on Interpretability
Financial Sentiment Terms Analysis
We evaluate the word attention mechanism of XRR and HAN
by using the finance-specific sentiment lexicon (FL) proposed
by (Loughran and McDonald 2011), which consists of the
following six word lists:9

1. Fin-Neg: negative business terminologies (e.g., deficit)

2. Modal: words expressing different levels of confidence
(e.g., could, might).

3. Fin-Pos: positive business terminologies (e.g., profit)

4. Fin-Unc: words denoting uncertainty, with emphasis on
the general notion of imprecision rather than exclusively
focusing on risk (e.g., appear, doubt).

5. Fin-Con: words denoting constraining, a factor that re-
stricts the amount or quality of investment options (e.g.,
prevent, limit).

6. Fin-Lit: words reflecting a propensity for legal contest or,
per our label, litigiousness (e.g., amend, forbear).



Figure 5: Word attention analysis

We first rank the terms in each sentence according to their
learned attention weights and use the top-10 terms to conduct
the evaluation. The left panel in Figure 5 plots the preci-
sion@10 for each method, for which the terms in the union
of the six word lists are considered as the ground truth. Ob-
serve that compared to the other two methods, XRR captures
more terms listed in the lexicon; note that Random denotes
the methods that randomly select 10 terms from each sen-
tence. In addition, in the right panel of Figure 5, we conduct
a finer analysis by treating the words in each word list as the
ground truth. An interesting finding is that XRR locates more
negative words in Fin-Neg than the other two methods. Pre-
vious literature shows that negative terms are usually highly
correlated with financial risk (Loughran and McDonald 2011;
Tsai and Wang 2016). For instance, deficit usually means “an
excess of liabilities over assets, of losses over profits, or of
expenditure over income in finance;” it is clear that a com-
pany’s report that is highly associated with deficit usually
implies higher future risk. This finding shows that the pro-
posed model is consistent with many previous findings and
highlights negative financial words more than other models.

Financial Sentiment Sentences Analysis
We further use an annotated list at the sentence level to an-
alyze the results of sentence-level attention mechanisms in
XRR. The reference list contains 2,432 sentences labeled as
risk-related ones. In particular, there are 1,539 high risk-
related sentences and 896 low risk-related ones, each of
which is selected from the MD&A sections of the used 10-K
dataset.10

For evaluation, we treat the 1,539 high risk-related sen-
tences in financial reports as our ground truth. In each finan-
cial report containing at least one high-risk labeled sentence,
we rank all of the sentences according to their learned at-
tention weights and use the top-10 sentences to conduct the
evaluation in terms of precision and recall. As shown in Fig-
ure 6, the XRR model is generally capable of highlighting
more risky sentences in terms of both metrics; note that the
dotted lines in the figure denote the average performance
over different years. These results again demonstrate that the

9 https://sraf.nd.edu/textual-analysis/resources/
10The list will be publicly available upon publication.

Figure 6: Sentence attention analysis

sentence-level attention weights of XRR reveal a stronger and
a more straightforward relation between texts and financial
risk than other models.

Furthermore, we provide two example sentences that are
associated with high attention scores in Figure 7, where that
in (a) is in the annotated list and its attention weight is four
times the average attention weight of sentences in the re-
ports associated with the highest risk level. Also, our model
also identifies a non-labeled sentence (b) as a high weighted
sentence in which the terms “redeem” and “loss” are both
associated with negative effects for the company and might
bring uncertainty and risk in the future. Such results demon-
strate that the XRR model effectively finds the important
parts within a document. Therefore, considering financial
scholars and practitioners’ concerns about risky information
in financial reports, these examples indicate that our model
spotlights texts that are highly correlated to high risk in fi-
nancial reports and effectively provides the important parts
within a document as a brief summary thereof.

Figure 7: Examples of sentence attention

Conclusion
In this paper, we propose XRR to rank companies to keep
them in line with their relative risk levels specified by their
post-event volatilities, in which the textual information in
financial reports is leveraged to make the prediction. Ex-
perimental results on a real-world financial report dataset
demonstrate that our approach exhibits a stronger ranking
power compared to the baselines. Furthermore, the evaluation
on interpretability also attests the effectiveness of our model
for providing explainable results.
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