
Label Augmentation via Time-based Knowledge Distillation for Financial
Anomaly Detection

Hongda Shen1, Eren Kursun2

1University of Alabama in Huntsville
hs0017@alumni.uah.edu

2Columbia University
ek2925@columbia.edu

Abstract

Detecting anomalies has become increasingly critical to the
financial service industry. Anomalous events are often indica-
tive of illegal activities such as fraud, identity theft, network
intrusion, account takeover, and money laundering. Financial
anomaly detection use cases face serious challenges due to
the dynamic nature of the underlying patterns especially in
adversarial environments such as constantly changing fraud
tactics. While retraining the models with the new patterns is
absolutely essential; keeping up with the rapid changes intro-
duces other challenges as it moves the model away from older
patterns or continuously grows the size of the training data.
The resulting data growth is hard to manage and it reduces
the agility of the models’ response to the latest attacks. Due
to the data size limitations and the need to track the latest pat-
terns, older time periods are often dropped in practice, which
in turn, causes vulnerabilities. In this study, we propose a la-
bel augmentation approach to utilize the learning from older
models to boost the latest. Experimental results show that the
proposed approach provides a significant reduction in training
time, while providing potential performance improvement.

Introduction
Machine learning approaches for anomaly detection have
found a wide range of application areas in financial services
such as cyber defense systems, fraud detection, compliance
and anti-money laundering (Anandakrishnan et al. 2018).
Among these, there is a sizable list of mission-critical ap-
plications each of which requires effective and timely detec-
tion of anomalous events in real-time. In applications such
as payment fraud detection systems, where tens of millions
of transactions per day are scored with millisecond range re-
sponse time SLAs, the underlying modeling challenges be-
come more prominent.

One of the grand challenges in such systems is the ad-
versarial nature of the detection process. Unlike data-sets
where the underlying patterns are naturally stable, fraud and
anomaly detection use cases typically deal with constant and
often rapid changes (Marfaing and Garcia 2018). The pat-
tern changes occur in both (i) normal events, as in changes
in normal transactions and customer behavior, as well as
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(ii) anomalous events, as in perpetrators implementing new
fraud tactics in response to recent prevention measures. For
instance, Account Takeover (ATO) fraud typically involves
fraudsters gaining access to customers account and draining
the funds across multiple channels. ATO fraud tactics are
known to show rapid changes. In some cases, perpetrators
move from one popular tactic to the next in a matter of days.

In such dynamic and adversarial environments, machine
learning especially supervised learning algorithms face a
dilemma. While the retraining of the models with the new
patterns improves the performance for recent trends, it fre-
quently degrades the performance for historical patterns that
may repeat. Excluding historical patterns causes retention
challenges. Yet, continuously extending the training data set
with additional data causes data size and training time is-
sues.

In this paper, we propose a novel supervised learning ap-
proach that provides a balance between these two opposing
forces. This technique, Label Augmentation via Time-based
Knowledge Distillation (LATKD) aims to transfer knowl-
edge from historical data to boost the model through data la-
beling. The proposed solution improves the training time for
agile response in adversarial use cases, such as fraud detec-
tion and account takeover, as well as providing robust per-
formance by combining a wider range of patterns over time.

Related Work
The concept of Knowledge Distillation (KD) was ex-
plored by a number of researchers (Buciluǎ, Caruana,
and Niculescu-Mizil 2006; Ba and Caruana 2014; Hinton,
Vinyals, and Dean 2015; Urban et al. 2016; Furlanello et
al. 2018). Initially, the goal of KD was to produce a com-
pact student model that retains the performance of a more
complex teacher model that takes up more space and/or re-
quires more computation to make predictions. Dark Knowl-
edge (Hinton, Vinyals, and Dean 2015), which includes a
softmax distribution of the teacher model, was first proposed
to guide the student model. Recently, the focus of this line of
research has shifted from model compression to label aug-
mentation which can be considered a form of regularizer us-
ing Dark Knowledge. In (Furlanello et al. 2018), Born Again
Network (BAN), a chain of retraining models, parameterized



identically to their teachers, was proposed. The final ensem-
ble of all trained models can outperform their teacher net-
work significantly on computer vision and NLP tasks. Addi-
tionally, (Furlanello et al. 2018) investigated the importance
of each term to quantify the contribution of dark knowledge
to the success of KD. Following this direction of research,
self distillation has emerged as a new technique to improve
the classification performance of the teacher model rather
than merely mitigating computational or deployment bur-
den. Label refinery (Bagherinezhad et al. 2018) iteratively
updates the ground truth labels after cropping the entire im-
age dataset and generates a set of informative, collective,
and dynamic labels from which one can learn a more robust
model. In another related study, (Romero et al. 2014) aimed
to compress models by approximating the mapping between
hidden layers of the teacher and the student models, using
linear projection layers to train relatively narrower students.

In this study, we propose a label augmentation approach
that incorporates Dark Knowledge from previously trained
models, which have been trained with different time ranges
to augment the labels of the latest dataset. This new knowl-
edge enables the transfer of learning from historical pat-
terns extracted by experienced experts. With the assistance
of their expertise, the new model sees performance improve-
ment without having the historical data-sets in its training.
This enables more effective detection of anomalous events,
and streamlines model retraining and deployment.

LATKD: Label Augmentation via Time-based
Knowledge Distillation

Consider the classical classification setting with a sequence
of training datasets corresponding to N different time
frames consisting feature vectors: Xt and labels Yt where
t = 0, 1, ...N . For traditional supervised learning algo-
rithms, a model is trained on {X<t, Y<t} for each time
frame. Naturally, the size of {X<t, Y<t} increases as time
passes. LATKD leverages the outputs generated by previ-
ously trained models M<t prior to each time frame t instead
of including historical data in the training directly. These
outputs are used to augment labels of the latest dataset and
construct a regularizer to the conventional loss function. For
time frame t, the training dataset will be {Xt, Yt} only and
the loss function to optimize in the training becomes:

Losst = CE(Yt, yt) +

t−1∑
i=K

KL(Oi,t, yt) (1)

where Oi,t and yt represents model Mi output on data Xt

and model output at the current time frame, respectively.
CE and KL are Cross-Entropy and Kullback–Leibler di-
vergence. With this second term in the loss function Eq. 1,
existing ground truth labels are augmented by the experi-
enced experts.

As the number of models increases over time, the histor-
ical models, whose underlying training data patterns have
changed provide increasingly less meaningful information
on the recent anomaly patterns. Thus, including them in the
training may not provide further performance gain for re-
training and possibly deteriorate the performance. To reduce

the negative impact of this distribution shift, we use param-
eter K to determine which model to start with and truncate
all the previous models prior to the current one. In this study
we used an empirical approach to determine K.

Figure 1: Architecture of Label Augmentation via Time-
based Knowledge Distillation (LATKD).

Fig. 1 illustrates the architecture of LATKD. For the
first time frame t = 0, a model M0 is trained on dataset
{X0, Y0}. Then, for each of the following time frames (de-
pending on the specific retraining schedule), a new identical
model Mt is trained from, Oi,t the supervision of previous
models M<t by using Eq. 1. Auxiliary labels (outputs) from
the previous models are highlighted in orange in Fig. 1.

Experimental Analysis
This section provides the experimental analysis for LATKD
using an open-source anomaly detection dataset (IEEE
Computational Intelligence Society 2019) based on telecom-
munications industry card-not-present payment transac-
tions. As in almost all the anomaly detection problems, neg-
ative class in this data set takes a very small portion of
the total transactions. For the experimental analysis, we ex-
tracted 6 months of data with the labels included. The first
day of this data set is assumed to be November 1st, 2017
(Timeframe Analysis 2019). The start date was used to fa-
cilitate data segmentation and does not impact the model
performance. November 2017 - January 2018, was used as
the training period while March - April 2018 was used as
the testing period. Data, including labels from additional
months, were gradually added in increments of 1 month into
the training starting with November 2017 to focus on an ad-
versarial fraud detection environment with monthly training.
Table 1 shows further details for each experiment period.

Table 1: Experimental periods details.
Period # Training Period Testing Period Training # Nonfraud / # Fraud

1 Nov. Mar. + Apr. 130937 / 3401
2 Nov. + Dec. Mar. + Apr. 219758 / 7090
3 Nov. + Dec. + Jan. Mar. + Apr. 315156 / 11029



We assume a 30-day delay for data labeling to account for
claim submission process and labeling. Therefore, Febru-
ary 2018 is considered as unlabeled; hence it was not used
for training. Categorical features were encoded using one-
hot encoding. log10 transformation was used on continu-
ous variables to limit their value ranges. Further details on
feature preprocessing can be found in Table 3 in the Ap-
pendix. Area Under Precision-Recall Curve (AUPRC) was
selected to compare classification performance as the pri-
mary metric. AUPRC has been shown as a stronger met-
ric for performance and class separation than Area Under
Receiver Operating Curve (AUROC) in highly imbalanced
binary classification problems (Davis and Goadrich 2006;
Saito and Rehmsmeier 2015).

In this section, we demonstrate the effectiveness of the
proposed approach and conduct a comparison between the
baseline of commonly used machine learning approaches
and the corresponding LATKD versions: (i) MLP: A Multi-
layer Perceptron based architecture has been trained on la-
beled data to serve as the baseline. Implementation details
of the MLP has been provided in Table 4 in Appendix (ii)
XG: Xgboost algorithm (Chen and Guestrin 2016) is a vari-
ant of Gradient Boosting Trees which has been widely used
to model tabular data (from Kaggle competitions to indus-
trial applications) due to its high efficiency and performance.
Specific set of hyperparameters for this study were deter-
mined using grid search and provided in Table 5 in Appendix
(iii) MLP-XG: An ensemble of baseline Xgboost and MLP
via averaging outputs of both models (iv) MLP-XG-LATKD:
Label Augmented MLP-XG using historical ensemble mod-
els.

Figure 2: AUPRC for MLP, XG, MLP-XG and MLP-XG-
LATKD.

We use a supervised binary classification approach, where
each algorithm was run 10 times for each training time pe-
riod. AUPRC value for each run is collected and the average
of all the 10 collected values is recorded as the final perfor-
mance measure.

Fig. 2 shows the AUPRC for the aforementioned methods
over three experiment periods. AUPRC improvement over
baseline MLP is shown in Table 2. XG outperformed MLP
for Period 1 and Period 3 while MLP performed better in Pe-

Table 2: Relative AUPRC difference of experimented meth-
ods against baseline MLP.

Period # XG MLP-XG MLP-XG-LATKD

1 2.28% 3.70% 3.70%
2 -0.71% 0.70% 1.14%
3 0.35% 2.31% 6.31%

riod 2. Furthermore, the ensemble of MLP and XG, MLP-
XG, outperformed both models by 2.23% on average and
up to 3.7% on AUPRC improvement against the baseline
MLP. LATKD augmented MLP-XG produced the best per-
formance for all three models. Particularly, in Period 3, by
having two previous models to augment the labels, LATKD
presented significantly better performance over baselines.
Similar performance improvement was observed by apply-
ing LATKD on MLP and XG separately.

From the performance comparison, MLP-XG ensemble
and MLP-XG-LATKD were identified as the highest per-
formance approaches. Fig.3 shows the average runtime in
seconds for MLP-XG and MLP-XG-LATKD over 10 re-
peated runs from November 2017 to April 2018. A machine
with Intel (R) Core (TM) i7-6700HQ CPU at 2.6GHz, 16GB
RAM and NVIDIA GTX 960M GPU was used for the run-
time comparison. MLP was trained with cumulative time pe-
riods of data (similar to Table 1) while the training period of
LATKD only included the month itself without any histori-
cal data. An extended version of the time range up to Apr-18
was used to better illustrate the LATKD runtime advantage
over the time.

Figure 3: Average runtime comparison between MLP and
MLP-LATKD.

Since LATKD enables the transfer of learning from his-
torical data, only limited recent training period was used to
train each model. As a result, the average runtime only de-
pends on the size of the latest data set. On the other hand, tra-
ditional supervised learning techniques including both MLP
and XG require all the available data in their training, which
leads to super-linear increases in the training time. Blue and
red bars stand for MLP-XG and MLP-XG-LATKD average
training times in Fig. 3. Both methods take the same time
to run at the beginning. Gradually, with more data added in
MLP training, its runtime increases while runtime of MLP-



XG-LATKD remains approximately the same. MLP-XG-
LATKD provides lower runtimes consistently over Dec-17
through Apr-18. Over the 6 months experimentation period,
the average runtime was reduced by 58.5% with up to 3.8x
improvement in Apr-18. It is important to note that the train-
ing runtime advantage of LATKD shown in this experiment
translates to significantly higher numbers in real-life imple-
mentations with larger data sets, further yielding reduced
runtime, and resources. This, in turn, yields improved train-
ing time, computational cost and agility of responses in ad-
versarial environments. LATKD provides the opportunity to
boost the performance of the individual models as well as
the ensembled models.

Conclusions
In this study, we propose, LATKD, a label augmenta-
tion algorithm for financial anomaly detection applications.
LATKD provides a way to boost the model performance by
incorporating a wider range of patterns including older and
newer patterns without unmanageably increasing the data set
size, while maintaining a robust performance. In adversarial
and time-critical use cases such as cyber defense, account
takeover fraud this provides significantly higher agility and
a more effective response to attacks.
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Appendix

Table 3: Dataset Preprocessing Details
Raw feature Type Encoding Null value Notes

TransactionAmt Continuous log10() - -
dist1 Continuous log10() −0.001 -
dist2 Continuous log10() −0.001 -
ProductCD Categorical One hot - -
card4 Categorical One hot NA -
card6 Categorical One hot NA -
M1-M9 Categorical One hot NA -
device name Categorical One hot NA “Others” if frequency < 200
OS Categorical One hot NA -
Browser Categorical One hot NA “Others” if frequency < 200
DeviceType Categorical One hot NA -

Table 4: Multi-layer Perceptron Architecture
Layer # Neurons Activation function Parameter

Dense 400 RELU -
BatchNormalization - - -
Dropout - - keep prob = 0.5
Dense 400 RELU -
Dropout - - keep prob = 0.5
Dense (Output) 2 Softmax -

learning rate - - 0.01
Batch size - - 512

Table 5: Xgboost Hyperparameters
Name Value

colsample bytree 0.8
gamma 0.9
max depth 3
min child weight 2.89
reg alpha 3
reg lambda 40
subsample 0.94

learning rate 0.1
n estimators 200


